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Abstract: Progression-free survival (PFS), defined as the time from randomization to progression of disease or
death, has been indicated as an endpoint to support accelerated approval of certain cancer drugs by the U.S.
FDA. The standard Kaplan–Meier (KM) estimator of PFS, however, can result in significantly biased estimates.
A major source for the bias results from the substitution of censored progression times with death times.
Currently, to ameliorate this bias, several sensitivity analyses based on rather arbitrary definitions of PFS
censoring are usually conducted. In addition, especially in the advanced cancer setting, patients with censored
progression and observed death times have the potential to experience disease progression between those two
times, in which case their true PFS time is actually between those times. In this paper, we present two alternative
nonparametric estimators of PFS, which statistically incorporate survival data often available for those patients
who are censored with respect to progression to obtain less biased estimates. Through extensive simulations, we
show that these estimators greatly reduce the bias of the standard KM estimator and can also be utilized as
alternative sensitivity analyses with a solid statistical basis in lieu of the arbitrarily defined analyses currently
used. An example is also given using an ECOG-ACRIN Cancer Research Group advanced breast cancer study.

Keywords: bias reduction; progression-free survival; Kaplan–Meier estimator; nonparametric.

1 Introduction

The U.S. Food and Drug Administration (FDA)may approve a drug to treat serious or life-threatening diseases,
where either no therapy currently exists or the drug shows significant improvement over current therapies,
based on a surrogate endpoint that is reasonably likely to predict a clinical benefit (e.g., prolong survival).
Such a process is known as accelerated approval. Progression-free survival (PFS), defined as the time from
randomization to disease progression or death, has become increasingly more accepted as a cancer drug
accelerated approval endpoint. The advantages that are central to PFS being such an accepted surrogate
endpoint include (1) accessibility prior to observation of a survival benefit; (2) reflection of tumor growth,
which could be highly correlated with cancer-related morbidity and death; and (3) non-subjectiveness to
potential confounding introduced by subsequent therapies usually administered after tumor progression or
termination of study therapy (https://www.fda.gov/media/71195/download).

However,missing progression data is a common problemwithmany PFS analyses, especially in trials with
higher non-compliance rates (possibly due to higher toxicities or a lower quality of trial conduct). In addition,
the assessment of disease progression can be time-consuming as it requires documentation of tumor
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measurements determined by various imaging methods, consultation with the treating physicians, and/or
evaluation by a central review committee. Thus, it is generally true that survival data, which are relatively
straightforward to assess, are more updated and complete than progression data at a given time during data
collection. The presence of a substantial proportion of death–PFS events, defined as those events where
patients are censored with respect to progression but have an observed death time, can greatly complicate the
analysis of PFS data and induce bias.

Many patients with death–PFS events, especially in the advanced cancer setting, have the potential to
experience undocumented disease progression after their progression censoring time and before death. For
such patients, the standard definition of PFS would replace their censored progression times with their
observed death times, thus, biasing the Kaplan–Meier (KM) PFS estimator upwards.

In practice, tomitigate the bias induced by death–PFS events,modified definitions of PFS are often used to
conduct sensitivity analyses. Several sensitivity analyses are usually required for regulatory submissions
where PFS is used as the primary endpoint of approval. However, these sensitivity analyses are usually based
on rather arbitrary definitions of censoring times. One such definition that is commonly used is to censor the
PFS time on the date of the last radiological tumor assessment if a death is observed aftermore than onemissed
visit, where the length of a visit varies depending on the specific disease. To date, there has been no established
standard definition of PFS actually used in practice; even the FDA’s guidance for cancer drug approval gives
several definitions of PFS to be used in sensitivity analyses to determine the robustness of a primary PFS
analysis (https://www.fda.gov/media/71195/download).

In this paper, we develop two alternative nonparametric PFS estimators that statistically incorporate
available survival data for patients with censored progression times, and evaluate their performances with
respect to each other and compared to the standard KM estimator through extensive simulations. Ruan and
Gray [1] considered such an incorporation of survival information for censored progression patients in their
PFS sensitivity analysis method with dependent censoring. However, their focus was not on estimation of the
PFS function and theirmethod required the computationally intensive EMalgorithm. The estimators presented
here are straightforward to calculate and can greatly reduce the bias in the KM estimator; in addition, they can
be utilized as alternative sensitivity analyses.

In Section 2, we describe in detail the alternative PFS estimators: (1) a generalized KM estimator using survival
time as the upper bound for PFS for those patients with death–PFS events; and (2) a nonparametric empirical
estimator assuming that the true progression times for those patients with death–PFS events are similar to the
progression times of the subset of patients with similar survival and observed progression. In Section 3, we
compare the performance of the estimators through extensive simulation studies, and give an example using an
ECOG-ACRINmetastatic breast cancer clinical trial (E2100) inSection4.Weclosewith somediscussion inSection 5.

2 PFS estimators

2.1 Notation

We first introduce notation that will be used throughout the paper; othermore specific notationwill be defined
as needed in individual sections.

Let n denote the total number of patients. Let Tp and Td denote the times to progression and death,
respectively, with corresponding censoring times Up ≥ 0 and Ud ≥ 0. Thus, we observe Xp = min(Tp, Up) and
Xd = min (Td, Ud) with corresponding censoring indicators δp = 1(Tp ≤ Up) and δd = 1(Td ≤ Ud). Let T = min (Tp, Td)
represent the composite endpoint time to PFSwith corresponding survival function ST(.). Our goal in this paper
is to estimate ST(.). Under the standard (naive) PFS definition, the censoring indicator is now max (δp, δd),
denoted by δs. Note that δs = 0 if and only if δp=δd = 0, in which case the corresponding censoring time Us is Up

andUp ≤Ud.We observeXs=min (T,Us) under this standard PFSdefinition.When δp= 1 and δd=0or 1,we refer to
those patients with observed progression times as having progression-PFS events (Xs = Tp). When δp = 0 and
δd= 1,we refer to those patients as having a death–PFS event (Xs=Td). The true PFS timeT is actually betweenUp
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and Td in the presence of death–PFS events. Thus, there exists a clear systematic bias, where Xs will generally
overestimate T. This systematic bias is what our proposed PFS estimators will attempt to correct.

2.2 Kaplan–Meier estimator

We assume the reader is familiar with the standard KM estimator [2] and will only give its definition here
without any derivational details. This is calculated directly based on (Xs, δs) in the standard PFS definition. Let
t1 < … <tk denote the k distinct observed PFS times in the standard PFS definition, dj be the total number of
progression-PFS events and death-PFS events at time tj, and pj represent the total number of patients at risk at
time tj. The KM estimator of PFS can be written as

ŜT(t) � ∏
j

m�1
(1 − dm

pm
).

2.3 Generalized KM estimator

We assume, for those patients with death–PFS events (δp = 0 and δd = 1), that their PFS times are between their
progression censoring and survival times (i.e., Up < T ≤ Td). We also assume independent censoring. Let t1 <
… <tk denote the k distinct observed PFS times in the standard PFS definition, dj be the total number of
progression–PFS events and death–PFS events at time tj, andmj be the number of censored patients (δs = 0) in
(tj, tj + 1). Then, the total number of patients at risk for PFS at time tj is nj = (mj + dj)+… + (mk + dk). Let hj denote

the hazard for PFS at time tj, then ST(tj) � ∏
q�1

j
(1 − hq).

To estimate the parameter vector h = (h1, …, hk), we let Aj and Bj denote the set of all patients who
experienced, respectively, progression–PFS and death–PFS events at time tj, and consider the following
likelihood:

L*(h) � ∏
j�1

k ⎡⎣⎧⎨⎩∏
l∈Aj

f T(tl)∏
l∈Bj

P(Up � upl ,T
d � tdl ,U

p < T ≤ Td)⎫⎬⎭ST(tj)mj⎤⎦
� ∏

j�1

k ⎡⎣⎧⎨⎩∏
l∈Aj

f T(tl)∏
l∈Bj

P(up
l < T ≤ tdl

∣∣∣∣Up � up
l ,T

d � tdl )
*P(Up � up

l

∣∣∣∣Td � tdl )P(Td � tdl )}ST(tj)mj]. (1)

We assume that Up is independent of (T, Td). This is similar to the non-informative censoring assumption used
in standard survival data analysis methods. This assumption is reasonable in the scenario of administrative
censoring, but may not hold if the censoring is due to worsening of disease. Violation of this assumption
could cause bias in the proposed KM estimator. Under this assumption, L*(h) can be written as

L*(h) � L(h)*∏
j�1

k ⎡⎣∏
l∈Bj

P(Td � tdl )⎤⎦, where
L(h) � ∏

j�1

k ⎡⎣⎧⎨⎩∏
l∈Aj

f T(tl)∏
l∈Bj

P(up
l < T ≤ tdl

∣∣∣∣Td � tdl )⎫⎬⎭ST(tj)mj⎤⎦ (2)

is a partial likelihood. Furthmore, we apply the following approximation

P(upl < T ≤ tdl
∣∣∣∣Td � tdl ) ≈ P(up

l < T ≤ tdl ) (3)

to (2), where equality is achievedwhen T is independent of Td. The resulting partial likelihood can be expressed
as in (4). To model P(upl < T ≤ tdl

∣∣∣∣Td � tdl ) directly, e.g., using a semiparametric dependence model, would
require complicated estimation methods that would severely limit the applicability/practicality of the

J.J. Zhang et al.: Alternatives to the Kaplan–Meier estimator 3



estimator. We expect some loss of efficiency likely due to using the partial likelihood instead of the full
likelihood; however, we will show through extensive simulation studies (Section 3) that this estimator has
minimal bias.

L(h) � ∏
j�1

k ⎡⎣⎧⎨⎩∏
l∈Aj

f T(tl)∏
l∈Bj

P(up
l < T ≤ tdl )⎫⎬⎭ST(tj)mj⎤⎦

� ∏
j�1

k [∏
l�1

dj {ST(t*(j,l)) − ST(tj)}{∏
q�1

j (1 − hq)}mj]
� ∏

j�1

k [∏
l�1

dj {ST(tr(j,l)) − ST(tj)}{∏
q�1

j (1 − hq)}mj]
� ∏

j�1

k [∏
l�1

dj {∏
q�1

r j,l( )(1 − hq) − ∏
q�1

j (1 − hq)}{∏
q�1

j (1 − hq)}mj]
� ∏

j�1

k ⎡⎢⎣∏
l�1

dj ⎧⎨⎩⎡⎢⎣ 1

∏j
q�r(j,l)+1(1 − hq) − 1⎤⎥⎦∏

q�1

j (1 − hq)⎫⎬⎭{∏
q�1

j (1 − hq)}mj⎤⎥⎦
� ∏

j�1

k ⎡⎢⎣∏
l�1

dj ⎧⎨⎩⎡⎢⎣ 1

∏j
q�r(j,l)+1(1 − hq) − 1⎤⎥⎦(1 − hj)⎫⎬⎭(1 − hj)nj−dj⎤⎥⎦

� ∏
j�1

k ⎧⎨⎩∏
l�1

dj ⎡⎢⎣ 1

∏j
q�r(j,l)+1(1 − hq) − 1⎤⎥⎦(1 − hj)nj⎫⎬⎭, (4)

where

t∗(j, l) �
⎧⎪⎨⎪⎩ tj−1 if  progression − PFS event

progression censoring time corresponding
to death time, tj, for  individual    l

if  death − PFS event

and

r(j, l) � { j − 1 if progression − PFS event

number of tg’s ≤ t*(j,l)  for g � 1,…, k if death − PFS event
.

It isworthwhile to note thatwhen all the observedPFS events are progression–PFS events (i.e., r(j, l) = j−1 for all
j = 1, …, k), the likelihood in (4) reduces to the standard KM likelihood:

L(h) � ∏
k

j�1

⎧⎨⎩∏
l�1

dj ⎡⎢⎣ 1

∏j
q�r(j,l)+1(1 − hq) − 1⎤⎥⎦(1 − hj)nj⎫⎬⎭

� ∏
k

j�1
[ 1
1 − hj

− 1]dj(1 − hj)nj
� ∏

k

j�1
[ hj
1 − hj

]dj(1 − hj)nj
� ∏

k

j�1
hdjj (1 − hj)nj−dj .

We call this estimator the “generalized”-KM.
The corresponding log-likelihood to (4) is
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l(h) � ∑
k

j�1

⎧⎨⎩ ∑
dj

l�1
log⎡⎢⎣ 1

∏j
q�r(j,l)+1(1 − hq) − 1⎤⎥⎦ + nj log(1 − hj)⎫⎬⎭. (5)

Closed-form solutions of h remain to be discovered, thus, a quasi-Newton method is used to maximize (5) and
obtain estimates of h. The resulting nonparametric generalized-KM (g-KM) estimator of PFS is

ŜT(tj) � ∏
j

q�1
(1 − ĥq).

The variance-covariance matrix for h, denoted Σ, can be approximated by the inverse of the observed infor-

mation matrix, −∂l(h)
∂h ; details are given in Appendix. Let hj = (h1,…, hj) and Σj denote the top (j × j) portion of Σ,

for j= 1,…, k. The variance of Ŝr(tj) can then be obtained using the following formula, similar to Greenwood [3]:

Var[ŜT(tj)] � ŜT(tj)2(1 − hj)−1∑
j
[(1 − hj)−1]′,

where a prime, ′, denotes the transpose.

2.4 Nonparametric empirical estimator

Let ν1< … <νk denote the k distinct observed failure times (i.e., times to progression or death). Also, let

dj � ∑n
i�11(Xd

i � νj, δdi � 1) and sj � ∑n
i�1 1(Xd

i ≥ νj) denote, respectively, the number of deaths at νj and the

number of patients at risk for death at νj, j = 1, …, k. Furthermore, we let emj � ∑n
i�11(Xp

i � νm,  δpi � 1,  Xd
i > νj)

denote the number of patients who progressed at νm and were alive at νj, and rmj � ∑n
i�11(Xp

i ≥ νm,  X
d
i > νj)

denote the number of patients at risk for progression at νm and alive at νj, where m ≤ j.
It is then straightforward to show that, for t∈(νj, νj + 1],

ST(t) � P(T > t)
� P(Tp > t,Td > t)
� P(Tp > νj,Td > νj)
� P(Tp > νj

∣∣∣∣Td > νj)P(Td > νj)
� Sp(t)Sd(t),

(6)

where

Sp(t) � P(Tp > νj
∣∣∣∣Td > νj)

� P(Tp > νj
∣∣∣∣Tp > νj−1,Td > νj)P(Tp > νj−1

∣∣∣∣Tp > νj−2,Td > νj)…
P(Tp > ν2|Tp > ν1,Td > νj)P(Tp > ν1|Td > νj).

It follows that

Ŝ
p(t) � ∏

j

m�1
(1 − emj

rmj
).

The second term in (6), Sd(t) = P(Td > νj), can be estimated using the standard KM estimator,

Ŝ
d(t) � ∏j

m�1(1 − dm
sm
). Thus, the final nonparametric empirical PFS estimator is

ŜT(t) � ∏
j

m�1
(1 − emj

rmj
)(1 − dm

sm
). (7)

In (7), dm is equal to zero if there is no death event at νm. Thus, if all the observed PFS events are progression–
PFS events and no death–PFS events, the empirical estimator becomes the standard KM estimator, similar to
the g-KM approach. The above empirical estimator uses the survival data of those patients with censored
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progression to obtain amore precise estimate of their PFS times. Specifically, this empirical estimator assumes
that the progression times for those patients with death–PFS events are similar to the progression times of the
subset of patients with similar survival and observed progression. Thus, it also imposes the standard KM
assumption of independent censoring. If there is a smaller number of death events, the proposed empirical
estimateswill be close to the standardKMestimates. An analytical form for the variance of (7) still remains to be
found, thus, we consider the bootstrap method [4] for variance estimation.

Given the small number of patients in the risk set at later times, the PFS function estimated using the
empirical estimator in (7) can become unstable in the tail and is generally notmonotonically decreasing. Thus,
we employ monotone regression using the pool adjacent violators (PAV) algorithm to restrict the estimator to
be monotonically decreasing [5]. The general idea behind monotone regression is to find a weighted least-
squares fit x to a vector y with weights w subject to monotonicity constraints x1 ≥ x2≥ … ≥xk, i.e.,

min∑
k

j�1
wj(yj − xj)2 subject to x1 ≥ x2 ≥…xk .

The PAV algorithm works as follows: if yj−1 ≤ yj, then w∗
j−1 = wj−1 + wj and

xj−1 � yj−1 + ( wj

w*
j−1
)(yj − yj−1),

for j = 1, …, k.
For our purposes, it is sufficient to letw = 1. Figure 1 gives an example of the empirical estimator with and

without monotone regression for a single simulated sample of size 100. As can be seen, the non-monotonicity is
generally verymild, especially for earlier times and reasonably large sample sizes. Note that whenwe refer to the
empirical estimator from now on, we are indicating the empirical estimator after applyingmonotone regression.

3 Simulation studies

In this section, we investigate the performance of the two PFS estimators presented in Section 2 with respect to
bias and efficiency through an extensive simulation study by varying (a) the proportion of progression
censored patients; (b) the relative difference between the true progression and death times; and (c) the
correlation between progression and survival times. In a factorial simulation study, where factors (a) and (b)
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Figure 1: Example of estimated PFS curves using
empirical estimator with/without monotone regression
for a single sample (n = 100).
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each have two levels and factor (c) has four levels, we investigate a total of 16 different scenarios for each PFS
estimator. The specific factor levels are chosen to reflect situations that are relevant in practice.

We vary factor (a) by generating datawith 20 and 30%censoringwith respect to progression. For factor (b),

we vary the ratio of the mean time to progression (Tp) and mean time to death after progression (Td|p), where

the mean death time is then defined as Td � Tp + Td|p (note that Td|p is not a conditional distribution). Spe-

cifically, we consider (Tp:Td|p) ratios of (1:1) and (1:2). Lastly, we allow correlations between Tp and Td of 0.8,
0.7, 0.6, and 0.5. The proportion of patients censoredwith respect to death is fixed for all scenarios at 20%. The
(censored progression %, censored death %) pairs (20%, 20%) and (30%, 20%) correspond to death–PFS
proportions of around 10% and 20%, respectively.

Technical details of data generation are as follows.We first generate two independent variables,X1 andX2,
from standard exponential distributions. Let Y1 = X1 and Y2 = X1 + ωX2, where

ω �
!!!!!
1 − r2

r2

√
and rdenotes the correlation between Tp and Td. To generate data in accordancewith the two levels of factor (b), we
consider (Tp,  Td) pairs of (4, 8) and (4, 12) months, which correspond respectively to (Tp:Td|p) ratios of (1:1) and
(1:2). It follows that,Tp � Tp × Y 1 andT

d � (Td × Y2)/(1 + ω). Finally, bothprogressionanddeath censoring times
are generated from uniform distributions with appropriate parameters such that the respective censoring per-
centages of {20%, 30%} and 20% are expected. We generate 300 replicates for all scenarios and estimators.

For comparison purposes, we also include a KM estimator that uses an alternative definition of PFS,
denoted KM*, where later death times are censored. Specifically, all patients with deaths beyond 3 months of
their censored progression times have their PFS times censored at their progression censoring times. We use
the fact that most advanced breast cancer trials have tumor assessments every 3 months. Although generally
accepted, such cutoffs for censoring are rather arbitrarily determined with no statistical theory for support.
Also, when a censoring cutoff of this kind is applied, a substantial proportion of the survival information is
often ignored and the endpoint becomes more similar to a time to progression (TTP) rather than the preferred
PFS endpoint. TTP analyses are usually only acceptable in situations where we can assume that themajority of
deaths are unrelated to the disease, which is generally an unreasonable assumption in the advanced cancer
setting (https://www.fda.gov/media/71195/download). In contrast to the KM* estimator, our proposed esti-
mators attempt to statistically incorporate more survival information into the estimation of the PFS function.
However, since the KM* estimator is often used in practice, we include it for completeness of comparison.

Tables 1 and 2 give the relative bias and standard errors (SE) of estimated PFS rates at 1, 3, 6, 9, and 12 months
averaged across all replicates for 20% and 30% progression censoring, respectively. Relative bias is defined as
(estimated PFS rates − true PFS rates)/true PFS rates. Figures 2–5 plot the average estimated PFS curves averaged
across all replicates for respective progression censoring percentages 20 and 30% corresponding to Tables 1 and 2.
Table 3 tabulates the absolute area between the average estimated and true PFS curves in Figures 2–5 standardized
over time, and Table 4 calculates the percentage improvement of the proposed estimators and the KM* estimator
over the KM estimator with respect to area between the average estimated and true PFS curves given in Table 3.

From all tables and figures, we can see some general trends in the bias of the KM estimator; the bias
increases with increasing proportion of progression censored patients, increasing relative difference between

the true progression and death times (or decreasing (Tp:Td|p) ratio), and increasing correlation between Tp and

Td, where each trend is such that all other factors are held constant. The first two trends are quite intuitive and
expected. Given our simulation data generation scheme, a patient with longer Tp is more likely to be censored
with respect to progression. If, in addition, Tp and Td are highly correlated, then that patient is also more likely
to have longer Td (compared to a patient from a population where Tp and Td are less correlated), which implies

that they aremore likely to have longer post-progression survival, Td|p. Since the KM definition of PFS replaces
censored progression times with death times, the bias of the KM estimator is expected to increase with
correlation (holding constant all other factors).
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FromFigures 2–5andTable 3,we see that ourproposedestimators and theKM* estimator are all very close to the
true PFS function for all scenarios, while the KM estimator is generally biased upwards following the trends
described above. Given that there are very few censored events early on, all estimatedPFS curves are very similar for
earlier times. Table4shows that theproposedempirical estimator improves themostupon theKMestimator in terms
of decreasing the areabetween the estimatedand truePFS curves; the averagepercentageof improvement across all
scenarios is about 60%. The g-KM estimator comes in second, and the KM* estimator follows closely behind. All the
estimators seem to be quite robust to varying (Tp, Td) correlations, except for the KM estimator for ratio (1:1).

The result that the KM* estimator is very close to the true PFS function is expected given the nature of our
simulated true samples, where there is no censoring and most PFS events are progressions, thus, there is little
involvement of survival information in the true PFS function. Moreover, the fact that our proposed estimators
perform comparably to the KM* estimator is a reassuring result; it supports that the proposed estimators can be
used as alternative sensitivity analysis tools with a solid statistical basis, in contrast to the rather arbitrarily
defined KM* estimator.

Table : Relative bias (SE) of estimated PFS rates for % progression censoring (averaged across  replicates).

Corr Estimator 1 month 3 months 6 months 9 months 12 months Median PFS
True 0.779 0.472 0.223 0.105 0.050 2.773

Mean (Tp,Td) ratio of (:)

. KM . (.) . (.) . (.) . (.) . (.) .
KM*

. (.) −. (.) −. (.) −. (.) . (.) .
Empirical −. (.) . (.) −. (.) −. (.) . (.) .
g-KM −. (.) −. (.) −. (.) −. (.) −. (.) −.

. KM . (.) . (.) . (.) . (.) . (.) .
KM*

. (.) −. (.) −. (.) −. (.) . (.) −.
Empirical −. (.) . (.) −. (.) −. (.) −. (.) .
g-KM −. (.) −. (.) −. (.) −. (.) −. (.) −.

. KM . (.) −. (.) −. (.) −. (.) . (.) −.
KM* −. (.) −. (.) −. (.) −. (.) . (.) −.
Empirical −. (.) −. (.) −. (.) −. (.) −. (.) −.
g-KM . (.) −. (.) −. (.) −. (.) . (.) −.

. KM . (.) −. (.) −. (.) −. (.) −. (.) −.
KM* −. (.) −. (.) −. (.) −. (.) −. (.) −.
Empirical −. (.) −. (.) −. (.) −. (.) −. (.) −.
g-KM . (.) −. (.) −. (.) −. (.) −. (.) −.

Mean (Tp,Td) ratio of (:)

. KM . (.) . (.) . (.) . (.) . (.) .
KM*

. (.) . (.) −. (.) −. (.) . (.) .
Empirical −. (.) . (.) −. (.) −. (.) . (.) −.
g-KM −. (.) −. (.) −. (.) −. (.) . (.) −.

. KM . (.) . (.) . (.) . (.) . (.) .
KM*

. (.) . (.) −. (.) −. (.) . (.) .
Empirical −. (.) . (.) −. (.) −. (.) . (.) −.
g-KM −. (.) −. (.) −. (.) −. (.) . (.) −.

. KM . (.) . (.) . (.) . (.) . (.) .
KM*

. (.) . (.) −. (.) −. (.) . (.) .
Empirical −. (.) . (.) −. (.) −. (.) . (.) −.
g-KM −. (.) −. (.) −. (.) −. (.) −. (.) −.

. KM . (.) . (.) . (.) . (.) . (.) .
KM*

. (.) . (.) −. (.) −. (.) . (.) .
Empirical −. (.) . (.) −. (.) −. (.) −. (.) .
g-KM −. (.) −. (.) −. (.) −. (.) −. (.) −.

Relative bias = (estimated PFS rates − true PFS rates)/true PFS rates. SE denotes the estimated standard error; corr denotes (Tp, Td)
correlation; KM* is theKMestimatorwith alternative PFSdefinition; g-KM is thegeneralized-KM;all scenarioshave%death censoring.
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With respect to efficiency, we see that the g-KM estimator is the least efficient while the other estimators
have better, similar efficiency. Generally, lower efficiency is considered an undesirable property; however, we
argue that at least part of the loss in efficiency of the g-KM estimator is actually a better reflection of the true
variability. To see this, let’s focus on those patients with death–PFS events. The KM and KM* estimators
assume, respectively, that Td andTdwithin 3months ofUp are the definitive PFS times,while the g-KMestimator
assumes, more accurately, that Up < T ≤ Td, which induces some natural variability. Thus, part of the loss in
efficiency is actually a more accurate reflection of the true variability, while the other part is admittedly due to
the use of the partial likelihood instead of the full likelihood. However, the simulations show that the g-KM
estimator performs quite well with respect to bias and could still be a useful alternative.

Given the assumptions for the empirical estimator, we should also expect some loss in efficiency due to
conditioning on the subset of patients with similar death times and observed progression times, which results
in very small risk sets at later times. However, we see that the efficiency of the empirical estimator is actually

Table : Relative bias (SE) of estimated PFS rates for % progression censoring (averaged across  replicates).

Corr Estimator 1 month 3 months 6 months 9 months 12 months Median PFS
True 0.779 0.472 0.223 0.105 0.050 2.773

Mean (Tp,Td) ratio of (:)

. KM . (.) . (.) . (.) . (.) . (.) .
KM*

. (.) −. (.) −. (.) −. (.) . (.) .
Empirical −. (.) . (.) . (.) −. (.) . (.) −.
g-KM −. (.) −. (.) −. (.) −. (.) −. (.) −.

. KM . (.) . (.) . (.) . (.) . (.) .
KM*

. (.) −. (.) −. (.) −. (.) . (.) −.
Empirical −. (.) . (.) −. (.) −. (.) . (.) −.
g-KM −. (.) −. (.) −. (.) −. (.) −. (.) −.

. KM . (.) . (.) . (.) . (.) . (.) .
KM*

. (.) −. (.) −. (.) −. (.) . (.) −.
Empirical −. (.) −. (.) −. (.) −. (.) −. (.) −.
g-KM −. (.) −. (.) −. (.) −. (.) −. (.) −.

. KM . (.) . (.) . (.) . (.) . (.) .
KM* −. (.) −. (.) −. (.) −. (.) −. (.) −.
Empirical −. (.) −. (.) −. (.) −. (.) −. (.) −.
g-KM −. (.) −. (.) −. (.) −. (.) −. (.) −.

Mean (Tp,Td) ratio of (:)

. KM . (.) . (.) . (.) . (.) . (.) .
KM*

. (.) . (.) −. (.) . (.) . (.) .
Empirical −. (.) . (.) −. (.) −. (.) . (.) −.
g-KM −. (.) −. (.) −. (.) −. (.) −. (.) −.

. KM . (.) . (.) . (.) . (.) . (.) .
KM*

. (.) . (.) −. (.) . (.) . (.) .
Empirical −. (.) . (.) −. (.) −. (.) . (.) −.
g-KM −. (.) −. (.) −. (.) −. (.) −. (.) −.

. KM . (.) . (.) . (.) . (.) . (.) .
KM*

. (.) . (.) −. (.) . (.) . (.) .
Empirical −. (.) . (.) −. (.) −. (.) . (.) −.
g-KM . (.) −. (.) −. (.) −. (.) −. (.) −.

. KM . (.) . (.) . (.) . (.) . (.) .
KM*

. (.) . (.) −. (.) −. (.) . (.) .
Empirical −. (.) . (.) −. (.) −. (.) . (.) −.
g-KM −. (.) −. (.) −. (.) −. (.) −. (.) −.

Relative bias = (estimated PFS rates − true PFS rates)/true PFS rates. SE denotes the estimated standard error; corr denotes (Tp, Td)
correlation; KM* is the KMestimator with alternative PFS definition; g-KM is the generalized-KM; all scenarios have %death censoring.
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comparable to the KM and KM* estimators. Brief simulations (not shown) confirm that this is due to the use of
monotone regression, which arbitrarily reduces the variability.

4 A data example

In the previous sections, we presented the details for the two proposed PFS estimators and evaluated their
performance against the KM estimator through simulation studies. Now, we use an ECOG-ACRIN metastatic
breast cancer study (E2100) to illustrate the application of the PFS estimators to real clinical data. E2100was an
open-label, randomized, phase III trial whose primary objective was to compare the efficacy of paclitaxel with
the combination paclitaxel plus bevacizumab as first-line treatment for metastatic breast cancer [6]. The
primary endpoint was PFS with overall survival as a secondary endpoint.
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Figure 2: Average estimated PFS curves for (Tp : Td) � (1 : 1) and 20% progression censoring (300 replicates).
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Table 5 summarizes the case status for the E2100 final analysis, where we censor for non-protocol treatment.
There are a respective total of 329 and 349 patients on the paclitaxel and combination arms eligible for analysis.

About 20% of patients on both arms experience death–PFS events. The (Tp:Td|p) ratios for the paclitaxel and
combination arms are about (1:2) and (1:1), respectively, with corresponding (Tp, Td) correlations around 0.5 and
0.6. Both arms have about 30%progression censoring. Given these factors and our simulation results, we should
expect the KM estimator to be biased upward for the paclitaxel arm and the other estimators (i.e., KM*, empirical,
and g-KM) to be very close to the true PFS function. For the combination arm, less of a difference between the
estimators is expected; however, the KM estimator should still be a slight overestimate of the truth.

Table 6 tabulates theestimatedPFS rates for 3, 6, 12, 18, and 24months for both armswith estimated standard
errors (SE) and median PFS times. Figure 6 plots the corresponding estimated PFS curves. Indeed, the results
show the KM estimator PFS curve to be above the other estimators, particularly for the paclitaxel arm, while less
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Figure 3: Average estimated PFS curves for (Tp : Td) � (1 : 2) and 20% progression censoring (300 replicates).
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of a distinction can bemadebetween the estimators for the combination therapy arm. Also as expected, the g-KM
estimator is somewhat less efficient than theother estimators. These results imply that the survival probability for
thePFS event in thepaclitaxel arm could havebeenworse than that reportedpreviously [6]. This doesnot change
the final conclusion about the beneficial effect of the combination arm in this clinical paper.

5 Discussion

In this paper, we develop two alternative nonparametric PFS estimators that statistically incorporate the
survival information that is often available for those patients with censored progression times. We use
simulation studies to investigate the performance of the alternative estimators compared to the standard KM
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Figure 4: Average estimated PFS curves for (Tp : Td) � (1 : 1) and 30% progression censoring (300 replicates).

12 J.J. Zhang et al.: Alternatives to the Kaplan–Meier estimator



estimator. Our results show that when (a) the proportion of censored progression data is larger and survival
data is fairly complete; (b) the correlation between time to progression and time to death is higher; and/or (c)
the relative difference between the true progression and death times is larger, the KM estimator of PFS is
generally positively biased. In such situations and others involving factors that were not considered here,
current PFS analysis methods dependmostly on sensitivity analyses based on somewhat arbitrary and ad-hoc
definitions of censoring to evaluate the robustness of the analyses. The estimators we develop here attempt to
reduce the bias of the KM estimator through the implementation of a statistical correction for the set of patients
with censored progression and observed death times. Both estimators are nonparametric and assume inde-
pendent censoring, just as the standard KM estimator does. In the presence of death–PFS events, our proposed
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Figure 5: Average estimated PFS curves for (Tp : T d) � (1 : 2) and 30% progression censoring (300 replicates).
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methods can be generalized to estimate the baseline survival function and cumulative hazard in a Cox model.
Estimation of baseline survival function or cumulative hazard is often necessary in risk prediction analyses.

As mentioned in Section 1, Ruan and Gray [1] also considered incorporating survival information for
progression censored patients in their PFS sensitivity analysis method with dependent censoring. Although
their focus was not on estimation of the PFS function, we modified and implemented their method for inde-
pendent censoring and conducted a small simulation study to evaluate its performance compared to the KM
and the two proposed estimators. The implementation is quite computationally intensive given the use of the
EM algorithm and our simulation results (not shown) showed that our proposed estimators performed
comparably in terms of bias and efficiency.

The generalized-KM estimator, which utilizes the fact that the true PFS time for a patient with a death–PFS
event is somewhere between their progression censoring and death times, is monotonically decreasing and

Table : Percentage (%) improvement of proposed estimators over KM estimator w.r.t. area between average estimated and true
PFS curves corresponding to Table .

Ratio Corr 20% Progression censoring 30% Progression censoring

KM* Empirical g-KM KM* Empirical g-KM

(:) . . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .

(:) . . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .

Ratio denotes (Tp : Td); corr denotes (Tp, Td) correlation; KM* is the KM estimator with alternative PFS definition; g-KM is the
generalized-KM; all scenarios have % death censoring.

Table : Absolute area between average estimated and true PFS curves standardized over time ( replicates).

Ratio Corr 20% progression censoring 30% progression censoring

KM KM* Empirical g-KM KM KM* Empirical g-KM

(:) . . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .

(:) . . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .

Ratio denotes (Tp : Td); corr denotes (Tp, Td) correlation; KM* is the KM estimator with alternative PFS definition; g-KM is the
generalized-KM; all scenarios have % death censoring.

Table : Case status for E analysis.

Arm Eligible cases PFS Progression-PFS Death-PFS Progression-censored Total deaths

Paclitaxel + bevacizumab      

Paclitaxel      

Total      
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has no obvious behavioral problems. As a result of using the partial likelihood instead of the full likelihood and
the approximation in (2) though, the g-KM estimator is somewhat less efficient and may not have the desired
asymptotic properties (e.g., consistency).However, our simulations showthat this estimator still hasminimal bias
inpractical situations, and itdoes so inamanner that is in linewith the intentionof thePFSendpoint (i.e., through
statistical incorporation of available survival data to obtain an improved estimator). Compared to the KM*
estimator, a major advantage of the g-KM estimator is that, in the death-PFS scenarios, it always uses death time
as the upper limit of the PFS time. In contrast, in the KM* method, a patients censoring status in the death–PFS
scenarios depends onwhether death occurs before or after a pre-defined cutoff time, creating a potential problem
of dependent censoring. Thus,we assert that the g-KMestimator can still be useful andmay serveas analternative

tool for PFS sensitivity analyses. A possible extension would be to model P(upl < T ≤ tdl
∣∣∣∣Td � tdl ) directly (as

mentioned in Section 2.3), using a semiparametric dependence model, and assess the trade-off between per-
formance improvement and robustness to the semiparametric assumptions of the estimation method.

Table : Estimated PFS rates (SE) and median PFS for E analysis.

Estimator 3 months 6 months 12 months 18 months 24 months Median PFS

Paclitaxel + bevacizumab

KM . (.) . (.) . (.) . (.) . (.) .
KM*

. (.) . (.) . (.) . (.) . (.) .
Empirical . (.) . (.) . (.) . (.) . (.) .
g-KM . (.) . (.) . (.) . (.) . (.) .

Paclitaxel

KM . (.) . (.) . (.) . (.) . (.) .
KM*

. (.) . (.) . (.) . (.) . (.) .
Empirical . (.) . (.) . (.) . (.) . (.) .
g-KM . (.) . (.) . (.) . (.) . (.) .

SE denotes the estimated standard error; KM* is the KM estimator with alternative PFS definition; g-KM is the generalized-KM.
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Figure 6: Estimated PFS curves for E2100 analysis.
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The empirical estimator assumes that the progression times for those patients with death–PFS events are
similar to the progression times of the subset of patients with similar survival and observed progression. This
estimator is generally not monotonically decreasing, thus, we apply monotone regression to restrict the
estimated function to be monotone; as long as the sample size is reasonably large, the non-monotonicity is
usually very mild. The efficiency of the estimator with monotone regression is comparable to the KM and KM*

estimators. With respect to bias, our simulations show that the empirical estimator performs the best out of all
the estimators evaluated for all scenarios considered. We recommend the empirical estimator as a bias-
reducing alternative to the KM and KM* estimators for PFS analysis, particularly for data with a substantial
proportion of death–PFS events. The empirical estimator may be used as an alternative sensitive analysis for
PFS as well. A more in-depth study of the estimator, including a formal establishment of its asymptotic
properties, would be a topic for future research.

In summary, we have proposed two novel PFS estimators in this paper. They are particularly useful in
sensitivity analyses for data with a substantial proportion of death–PFS events. The nonparametric empirical
estimator typically has less bias than all the other estimators considered in this paper. The g-KM estimator uses
a likelihood approach where the likelihood is constructed based on the reality that there could be an unre-
ported disease progression for a patient with a death–PFS event. Although the g-KM estimator typically has a
larger variance than the other estimators, it performed reasonablywell with respective to the areas between the
estimated and the true PFS curves as shown in our simulation studies.
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Appendix
Details for variance estimation of h in Section 2.3

Recall that l(h) � ∑k
j�1
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2l h( )
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